Information theoretic measures of dependence, compactness, and non-gaussianity for multivariate probability distributions
نویسنده
چکیده
A basic task of exploratory data analysis is the characterisation of “structure” in multivariate datasets. For bivariate Gaussian distributions, natural measures of dependence (the predictive relationship between individual variables) and compactness (the degree of concentration of the probability density function (pdf) around a low-dimensional axis) are respectively provided by ordinary least-squares regression and Principal Component Analysis. This study considers general measures of structure for non-Gaussian distributions and demonstrates that these can be defined in terms of the information theoretic “distance” (as measured by relative entropy) between the given pdf and an appropriate “unstructured” pdf. The measure of dependence, mutual information, is well-known; it is shown that this is not a useful measure of compactness because it is not invariant under an orthogonal rotation of the variables. An appropriate rotationally invariant compactness measure is defined and shown to reduce to the equivalent PCA measure for bivariate Gaussian distributions. This compactness measure is shown to be naturally related to a standard information theoretic measure of non-Gaussianity. Finally, straightforward geometric interpretations of each of these measures in terms of “effective volume” of the pdf are presented.
منابع مشابه
Information Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملFunctional connectivity in resting-state fMRI: Is linear correlation sufficient?
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strengt...
متن کاملHermite Polynomials and Measures of Non-gaussianity
We first review some rigorous properties of the Hermite polynomials, and demonstrate their usefulness in estimating probability distributions as series from data samples. We then proceed to explain how these series can be used to obtain precise and robust measures of nonGaussianity. Our measures of non-Gaussianity detect all kinds of deviations from Gaussianity, and thus provide reliable object...
متن کاملInformation Covariance Matrices for Multivariate Burr III and Logistic Distributions
Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...
متن کاملAn information theoretic approach to statistical dependence: copula information
We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum entropy distribution. The idea of marginal invariant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009